Exercise set 3: Itô's formula

Session 1: 4.1, 4.2, 4.3, 4.11, 4.13, 4.14
Session 2:
Simple facts needed to solve these exercises:

- $d\left(g\left(t, X_{t}\right)\right)=\frac{\partial g}{\partial t}\left(t, X_{t}\right) d t+\frac{\partial g}{\partial x}\left(t, X_{t}\right) d X_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(t, X_{t}\right)\left(d X_{t}\right)^{2}$
- $\mathrm{E}\left[\int_{S}^{T} f(s, \omega) d B_{s}\right]=0$ for all $f \in \mathcal{V}$.

Problem 1

Let $g(t, x)=t x^{2}, X_{t}=B_{t}$. Let $Y_{t}=t B_{t}^{2}$, and use Itô's formula to compute $d Y_{t}$. Write the answer on integral form.

Problem 2

Let $g(t, x)=e^{\alpha x}$, where α is a deterministic constant, and use Itô's formula to compute $d e^{\alpha B_{t}}$.

Problem 3

Put $y(t)=\mathrm{E}\left[e^{\alpha B_{t}}\right]$, where α is a deterministic constant.
a) Prove that

$$
y(t)=1+\frac{\alpha^{2}}{2} \int_{0}^{t} y(s) d s
$$

Hint: Use the result in problem 2.
b) Show that

$$
y^{\prime}=\frac{\alpha^{2}}{2} y
$$

and solve this differential equation to find a formula for $\mathrm{E}\left[e^{\alpha B_{t}}\right]$.

Problem 4

Let $X_{t}=\left(B_{1}(t), B_{2}(t), B_{3}(t)\right)$. Compute

$$
d\left(e^{t} B_{1}(t) B_{2}(t) B_{3}(t)\right)
$$

Problem 5

Let $X_{t}=\left(B_{1}(t), B_{2}(t)\right)$. Compute

$$
d\left(B_{1}^{2} B_{2}^{2}\right)
$$

Problem 6

Let $X_{t}=\left[\begin{array}{c}t \\ e^{2 B_{t}}\end{array}\right]$. Find u and v such that $d X_{t}=u d t+v d B_{t}$.

